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ABSTRACT
Various gene network models with distinct physical nature have
been widely used in biological studies. For temporal transcriptomic
studies, the current dynamic models either ignore the temporal vari-
ation in the network structure or fail to scale up to a large number
of genes due to severe computational bottlenecks and sample size
limitation. Although the correlation-based gene networks are com-
putationally affordable, they have limitations after being applied
to gene expression time-course data. We proposed Temporal Gene
CoexpressionNetwork Analysis (TGCnA) framework for the transcrip-
tomic time-course data. The mathematical nature of TGCnA is the
joint modeling of multiple covariance matrices across time points
using a ‘low-rank plus sparse’ framework, in which the network sim-
ilarity across time points is explicitly modeled in the low-rank com-
ponent. We demonstrated the advantage of TGCnA in covariance
matrix estimation and gene module discovery using both simu-
lation data and real transcriptomic data. The code is available at
https://github.com/QiZhangStat/TGCnA.
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1. Background

High throughput manner and low cost of sequencing technologies enable the biologists
to generate an enormous wealth of data for discovering and quantifying the relationship
among large amount and various types of molecular elements, such as gene expressions,
proteins, metabolites and epigenetic marks. These elements and their relationship or inter-
actions could be modeled as nodes and edges in a network model. Specifically, the gene
co-expression network (GCN) models have been used for exploration, interpretation and
visualization of the relationship among genes in a wide range of biological applications,
including disease-gene association [43], identification of genes responding to environmen-
tal change, tissue-specific gene identification [37], and functional gene annotation [19].
GCNs can also be combined with other biological data in various analyses, such as identi-
fying functional eQTLs [41] and studying gene-phenotype association [13]. Partially due
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to this, many GCN databases were developed as annotation resources (e.g. GeneFriends
[40], COXPRESdb [29] and PlaNex [44]).

Many construction tools and analysis tools were developed for GCN, and the phys-
ical nature of the resultant networks are different. WGCNA [46] was developed based
on the marginal correlation of the gene pairs. GeneTS [34] and BicMix [15] built Gaus-
sian Graphical Models (GGM) of genes, which were based on partial correlations. Under
the multivariate Gaussian assumption, GGM captures the conditional dependence among
genes. Mutual information has also been used in defining gene networks [8]. Comparing
with Pearson’s correlation, it could also capture the nonlinear association [36]. Differ-
ent from the un-directed networks produced by the above methods, Bayesian Network
(BN)-based methods infer directed networks from gene expression data [14,28].

Temporal transcriptomic data are extremely useful in biological studies, such as in devel-
opmental biology [17] and in stress biology [27]. GCN models have been utilized for
these kinds of analysis. For instance, BNs could also be extended as Dynamic Bayesian
Network (DBN) for time-course data, which models the directed gene-gene relationship
across time points [23]. Besides DBN, another two lines of dynamic network models are
based on the differential equations [47] and dynamic system model [5]. These methods,
however, mostly focus on the temporal variation of the mean processes of the gene expres-
sion, but not the changes in the covariance structure. Additionally, these computational
algorithms search in high-dimensional parameter space and require a large number of
replicates and/or long computational time that does not scale to large networks. For exam-
ple, Zhu and Wang [48] reported that it took 9min for their proposed method HMDBN
to learn a simulated dynamic network among 10 nodes using 1019 observations, while
its competitors all took 11–58 h. Even though HMDBN has made tremendous progress
along this direction, it may be still unrealistic to fit large DBN without further computa-
tional improvement, as the parameter space grows exponentiallywith the number of nodes.
In practice, many biologists simply built one static GCN by aggregating all data together
[4,27]. Such strategies mix various sources of heterogeneity and could describe neither the
dynamics as in DBNs nor the time-specific snapshots of the biological systems. To con-
struct the latter, the naive approach is simply building one GCN at each time. Then they
can be compared them using differential network analysis [3]. It also has many drawbacks.
First, the replicates at each time pointmay not be large enough to build a reliable and robust
GCN. Second, ignoring the similarity of the gene expression at different time points within
the same time course often results in false positives in differential network analysis across
time points. In this paper, we presented a new method for building time-point specific
GCNs, which we refer to as Temporal Gene Coexpression Network Analysis (TGCnA). It
jointly estimates all GCNs for all time points using a novel ‘low-rank plus sparse’ frame-
work [12,25]. In both simulations and the real data, we showed that the resulting GCNs
were more robust and accurate than the separate modeling at each time point and thus led
to more accurate downstream analysis.

2. Methods

2.1. Model setup

In a typical transcriptomic time-course study, suppose we collect nt samples and observe
the p × nt data matrix Xt = (xt1, . . . , xt,nt ) for t ∈ {t1, . . . , tT}, where p is the number of
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genes, nt is the number of samples andT is the total number of time points. Reconstructing
the GCN at each time point can be achieved by estimating �t and the covariance matrix
of the rows of Xt . Since this is our focus, we assume the rows of Xt have zero mean.

One naive estimate of�t is simply the raw sample covariance matrix �̂t . This approach
may lead to extremely noisy estimates, because the sample sizes at each time point are
usually small. It also ignores the natural partial ordering of the samples (by time), and
the network structural similarity across time points. Such similarity comes from various
sources. For example, the genes in the same pathway tend to be coexpressed, and the path-
way membership of the genes are fixed (e.g. KEGG database). The temporal change in
GCN, however, could be caused by the common genes among these pathways share genes,
and the time-varying pathway activity strength.

The above biological observationsmotivate us tomodel GCNwith time-invariant latent
factors and their time-varying loadings, an approach connected with the low-rank approx-
imation of high-dimensional covariance matrix [11]. In the literature of matrix recovery, it
has been noted that the low-rank approximationmay be too restrictive and not robust, and
a natural extension is the ‘low-rank plus sparse’ framework [12,25]. Towards this end, we
also included a time-specific sparse component to reserve the significant links that cannot
be captured by the factor model. In the context of gene networks, these sparse components
are expected to capture the important time-specific gene-gene interactions that cannot be
explained by the latent factors.

To summarize, we propose the following ‘low-rank plus sparse’ estimator for �t

�̂t = UDtUT + R̂t (1)

Here U is a p × K matrix whose columns are the time-invariant latent factors learned
from the transcriptomic data itself, the K × K diagonal matrix Dt are their loadings that
change smoothly through time, and R̂t denotes the estimated sparse component of the
time-specific links at time point t. Our model shares the ‘low-rank plus sparse’ framework
as in [12], but we extend their framework to the joint modeling of an ordered sequence of
covariance matrices instead of one single covariance matrix.

2.2. TGCnA: temporal gene coexpression network analysis using low-rank plus
sparse framework

We propose the Temporal Gene Coexpression Network Analysis (TGCnA, Algorithm 1)
framework based on the ‘low-rank plus sparse’ model (Equation (1)).

Algorithm 1: TGCnA
Input: Time-course gene expression data matrices Xt1 ,Xt2 , . . . ,XtT (RNA-Seq or
micro-array data)
Output: Estimated time-specific coexpression networks �̂t for t ∈ {t1, . . . , tT}
Steps:

(1) Extract the time-invariant latent factors U by applying SVD to the pooled
normalized data matrix.
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(2) Estimate the time-specific weights Dt via spline.
(3) Estimate the time-specific sparse component R̂t by adaptive thresholding.
(4) Re-construct the covariance matrix at time t according to Equation (1) and

calculate the correlation matrix.

When performing SVD on pooled data (across all time points) for extracting U in the
first step, normalization is critical. If not done properly, the leading principal directions
could be heavily influenced by the time points with larger sample sizes or larger variability.
Data normalization typically involves centering and scaling. Our goal in this step is to find
the principal directions that are representative at all time points. Thus, we scaled Xt with
the leading singular value ofXt and thenmultiplied the square root of the number of genes√p. This approach assigned equal weights to the principal directions of the data at each
time point. Write the pooled normalized data as

X̃ = √
p(λ−1

1 Xt1 , . . . , λ
−1
T XtT )

where λ� is the leading singular value of Xt� . Then we applied SVD to X̃ and used its top K
left singular vectors as the columns of the time-invariant latent factors matrixU. Choosing
the rank for low-rank matrix approximation is a difficult task [39], because fewer PCs will
include incomplete information of the process while more PCs will cause the model over-
parameterized and include noise. This problem could be posed as a model selection prob-
lem, and many information criteria have been applied, including Akaike’s entropy-based
Information Criterion (AIC, [1,2]) and Minimum Description Length (MDL [31,32,39],
see Appendix A.1 for details). There is no dominant procedure for this problem, and both
AIC andMDL are consistent under certain regularity conditions. However, Valle et al. [39]
suggested that AIC tended to overestimate the dimension of the low-rank approximation
in certain scenarios. This is consistent with our data analysis, where we found that both
of AIC and MDL selected the correct number of components in simulations (Appendix
Figure 1), while MDL selected a more compact model in the real data analysis (Appendix
Figure 2). Thus, we recommend using MDL at this step.

In the second step, let Uk be the kth latent factor, and one natural raw estimate of its
weight at time point t is d̃tk = UT

k XtXT
t Uk. For fixed k = 1, . . . ,K, we propose to fur-

ther smooth (d̃t1,k, . . . , d̃tT ,k), the time-varying weight curve of Uk, at its log scale using
spline, and report resultant sequence (dt1,k, . . . , dtT ,k) as the temporal weights of this factor.
Finally, we define

Dt = diag(dt,1, . . . , dt,K)

In the third step, we estimated the time-specific sparse component R̂t using the adap-
tive thresholding rule [6] as used in [12]. To facilitate the presentation, we introduce the
following two notations: we will use A(i, j) to denote the element of A in its ith row and jth
column, and (b)+ to denote the positive part of b, i.e. it is 0 if b is negative. Then, let

R̃t = 1
nt − 1

XtXT
t − UDtUT



1068 J. LI ET AL.

Figure 1. Mean Frobenius loss in covariance matrix estimation at each time point with 95% predic-
tion band for simulated continuous data. The y-axis represents the values after being normalized by the
Frobenius norm of their corresponding true covariance matrices.

be the original residual matrix after removing the low-rank component from the sample
covariance at t. The elements of the sparse component matrix are then

R̂t(i, j) = R̃t(i, j)(1 − τt,i,j/|R̃t(i, j)|)η+
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Figure 2. Adjusted Rand Index between the discovered modules and the ‘true’ simulated modules at
each time point for simulated continuous data.

for 1 ≤ i, j ≤ p and i �= j, where the adaptive threshold

τt,i,j = c
√
R̃t(i, i)R̃t(j, j)

for some non-negative constant c ∈ [0, 1] and η > 0. In our analysis, we set c = 0.5, and
η = 4 as suggested in [6,12].
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Finally, the time-specific gene-gene covariance matrices can be assembled according to
Equation (1) and converted to the corresponding correlation matrices.

2.3. Implementation and computation time

We implementedTGCnA inR. The computational time increaseswith the number of genes
and time points. For our real data analysis with more than 3000 genes and 12 time points,
TGCnA only took about 7min on a laptop computer.

2.4. Downstream analysis of TGCnA

The output of TGCnA are time-specific gene-gene correlation matrices which could serve
as the input of gene co-expression network analysis procedures such asweighted correlation
network analysis (WGCNA) [22]. WGCNA is a method for finding clusters/modules of
highly correlated genes and then describing the correlation patterns among genes across
different samples. In this study, we fed our outputs to WGCNA as adjacency matrices for
constructing scale-free gene networks at each time point using power transformation and
for module discovery by hierarchical clustering with adjacency-based dissimilarity.

In the real data analysis, we further investigated the biological interpretation of
the discovered modules using R/Bioconductor package clusterProfiler [45].
clusterProfiler performs a hypergeometric test for enrichment analyses of given
gene lists. We only performed the enrichment analysis of KEGG pathways instead of
the other gene ontology terms, as we only analyzed the genes in KEGG pathways (see
Section 3.2.1 for details).

3. Results

In the following, we applied TGCnA to both simulation data and a brain data set and com-
paredwith the static gene coexpression networks constructed separately at each time point,
which is called, in this paper, ‘Naive’ estimate due to its independence assumption among
time points.We showed that TGCnA achievesmore accurate covariancematrix estimation
and better-discovered gene modules.

3.1. Simulation-based evaluation

3.1.1. Simulationmodel
We simulated the gene expression data whose covariancematrices�t were generated based
on Equation (1). Let p be the number of genes. In our simulationmodel (see Appendix A.2
for details),C is the number of true underlying gene groups, which equals to the true num-
ber of low-rank component for our simulation model. Roughly speaking, the larger the C,
the more complex the covariance matrices are. We simulated the time-invariant latent fac-
tor matrix U in a way that it encoded C potentially overlapping gene groups, and each
factor was associated with a smooth weight curve. The time point-specific sparse compo-
nents Rt ’s were generated such that they also contained the same grouping structure. The
continuous transcriptomic time-course data were then generated fromN(0,�t). We addi-
tionally simulated length p count vectors from correlated Poisson distributions that mimic
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RNA-Seq data. In the log-scale, the expectations of these Poisson models are simulated
from N(μ0, σ 2

0�t) where �t is as specified above, and (μ0, σ 2
0 ) = (log(20), 0.22) are sim-

ulation parameters that scale the simulated count data so that they resemble the range as
seen in real RNA-Seq data (see Appendix A.2 for details). For the analysis with count data,
we used log(count + 1) as the input of TGCnA and the Naive method. We remark that
the estimated GCNs from such count data are generally not comparable with �t in terms
of covariance estimation loss due to their difference in physical meanings. However, they
should have a similar group structure.

Let T be the total number of time points, and n the number of replicates at each time
point. In our simulation studies, we fixed p = 2000 and considered T = 5, 15, C = 5, 15,
and n = 5, 15. For each setting, we repeated the simulations for 40 times.

3.1.2. TGCnA improves the time point specific gene-gene covariancematrices
estimation
The statistical nature of a gene coexpression network is a covariance matrix. Thus we first
compared TGCnA with the naive method in terms of the Frobenius loss in covariance
matrix estimation using the simulated continuous data (Figure 1). We found that TGCnA
outperformed the naive methods in all simulation settings. In particular, even though both
TGCnA and the naive method perform worse when the number of replicates per time
point decreases (e.g. n = 5), the comparative advantage of TGCnA actually becomes big-
ger. This is because TGCnA enables the time-specific covariance matrix estimates to use
the information from the other time points through the low-rank component. The thresh-
olded sparse component of TGCnAalso effectively de-noises the estimates by trimming the
spurious correlations, which could explain the more significant contrast between TGCnA
and the Naive method when the true covariance matrices have more complex structure
(e.g. C = 15).

3.1.3. TGCnA achievesmore accuratemodule discovery
One of the major goals of gene coexpression analysis is module discovery, which is essen-
tially a clustering problem, whose performance could be measured by the Adjusted Rand
Index (ARI) of the discovered modules and the true module membership. In our sim-
ulation studies, the ‘groups’ defined in the simulation setting are time-invariant and
overlapping, and their group cohesiveness can also vary across time points. Thus it is
not a suitable measure of the time-varying gene module architecture. Instead, we calcu-
lated the ARI between the identified modules (using the same clustering algorithm) from
the simulated true time-specific correlation matrices, and those discovered from the cor-
responding estimated correlation matrices (either by TGCnA or the Naive method), the
former of which were treated as the ‘ground truth’ as the true simulated correlations were
used. Figure 2 and Appendix Figure 3 compared the modules discovered from the TGCnA
and the Naive estimates of the time-specific correlation matrices in terms of their ARI’s
against the ‘ground truth’, and we found that TGCnA led to more accurate modules esti-
mated in most settings. Similar to our observation in the comparison in covariance matrix
estimation, TGCnA became more preferable when the structure of the true covariance
matrices was more complex. But the number of replicates did not appear to have a clear
impact on the difference between the two methods, except in the case where T = 15 and
C = 15.
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Figure 3. Hierarchical clustering of the normalized weight curves of the 31 TGCnA factors. (A) Dendro-
gram of the hierarchical clustering. (B)–(D) The weight curves in the three clusters, each featured (B)
a peak around early infancy, (C) a monotone decreasing trend, and (D) a peak at early prenatal state,
respectively.

3.2. Analysis of BrainSpan RNA-Seq data

3.2.1. Data description and preprocessing
TheRNA-Seq datawere theDevelopingHumanBrain dataset obtained from theBrainSpan
Atlas (http://www.brainspan.org/static/download.html). This data set consists of 524 brain
samples in total, grouped into 12 developmental stages ranging from 8 post-conceptional
weeks (pcw) to 40 years of age, including 6 prenatal time points and 6 time points after birth
( see Appendix Table A1 for details). The number of samples in each stage ranges from 22
to 93. The expression values of this dataset were RNA-sequencing reads in the units of
Per Kilobase of transcript per Million (RPKM) for 52,376 genes in total. We applied a log

http://www.brainspan.org/static/download.html
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transformation, log2(RPKM + 1) on the expression values, and filtered out the genes with
low variation in expression and consistently low expressions in the proceeding of devel-
opment. The cutoffs were the third quartile value less than log2(5) and the interquartile
range less than log2(1.5). Even though all genes are potentially interesting, including non-
coding genes and genes without known functions, building a network with all genes will
unavoidably add noise and unimportant nodes to the network. Since our goal is bench-
marking GCNmethods, we only analyzed the 3114 genes annotated by the KEGG pathway
database [20] and filtered the rest to simplify the biological interpretations. Since our goal
was covariance matrix estimation, the genes expressions were centered at each time point.

3.2.2. TGCnA extracted interpretable latent factors
Time-invariant latent factors were learned by TGCnA, and they were related to the gene
group structure. The biologicalmeanings of time-invariant latent factorswere studied from
all 31 extracted components for the BrainSpan data in this section.

As per its definition, a time-invariant factor k is associated with a time-varying weight
curve (dt1,k, . . . , dtT ,k) representing the importance of this factor to the covariance matri-
ces. Therefore, the similarity in the weight curves indicates that the corresponding factors
have similar behaviors and then relevant biological functions. All the normalized curves
were clustered by a hierarchical clusteringmethod, and threemetaclusters were discovered
(Figure 3(A)). Each metacluster has individual characteristic: a peak around early infancy
(Figure 3(B)), amonotone decreasing trend (Figure 3(C)), and a peak at early prenatal state
(Figure 3(D)), respectively.

Based on KEGG pathway enrichment analysis of the top 25% most relevant genes for
each metacluster (see Appendix A.3 for details), their enriched pathways were generally
consistent with the overall pattern of the weight curves. For Cluster 1 (Figure 3(B)) featur-
ing a peak around early infancy, the enriched pathways are generally relevant to the brain
development of infants. For example, one enriched pathway, synaptic vesicle cycle path-
way, regulates the dendritic and synaptic density, which has been shown to reach peak in
infancy and early childhood and decline from 2 to 16 years [9]. The discovered pathway,
PPR pathway, is associated with white-matter development and modulates brain develop-
ment in preterm infants [16,21]. Cluster 2 (Figure 3(C)) had monotone decreasing weight
curves and was enriched with the pathways becoming inactive during aging, such as neu-
roactive ligand-receptor interaction [10]. In Cluster 3 (Figure 3(D)) with a peak at the early
prenatal state, enriched pathways are relevant to the embryonic brain development such as
Cell adhesion molecules (CAMs), Gap junction, and Mucin type O-glycan biosynthesis
[38].

3.2.3. Module discovery and annotation
Module identification and comparison are the most widely used downstream analysis of
GCN, as they reveal the potential co-regulation relationship among genes. In this section,
we explored the biological interpretation of the modules discovered from the time-specific
coexpression networks constructed by TGCnA.

We first investigated the module conservation across time points. A new adjacency
matrix was built whose edge weights were the proportion of total time points that this
pair of genes were in the same module. We called a gene-gene interaction to be time-
invariant if they were always in the same module. There were 1156 genes involved in such
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time-invariant connections, which led to a reduced adjacency matrix. Clustering based
on its associated TOM distance matrix yielded 14 modules. KEGG enrichment of these
modules showed that regulation of actin cytoskeleton, protein processing in endoplasmic
reticulum (ER), Ras signaling pathway,MAPK signaling pathway, andRap1 signaling path-
way were enriched (FDR = 0.1 for each module). The regulation of the actin cytoskeleton
pathway is critical for the development of the neural system, especially for neuronal migra-
tion [35]. Endoplasmic reticulum is related to various acute disorders and degenerative
diseases of the brain [30]. The Ras andMAPK signaling pathways regulate many cell func-
tions such as cell proliferation, survival and apoptosis. Rap1 pathway is important for
Neuronal Progenitor Cell Differentiation [33]. Overall, these pathways encode fundamen-
tal cell functions that are expected to have strong effects at all time points, which could
explain why these genes were always connected.

Differential network analysis is a popular downstream analysis after gene network con-
struction. Thus we designed a conservative differential analysis of the pathways enriched
in modules discovered at different time points (Appendix A.4). In our study, we compared
the TGCnA outputs of the 2nd (10–12weeks prenatal) and the 11th (adolescence) time
points based on this method as a showcase. It was striking to see that Huntington’s disease
was enriched in two modules for the adolescence stage. Symptoms of Huntington’s disease
usually begin between 30 and 50 years of age [42]. Our results suggested that its molec-
ular signature could be found in transcriptomic data at an even earlier age. On the other
hand, the pathway enriched at the 10–12weeks prenatal stage was an Adherens junction,
which was ‘important for maintaining tissue architecture and cell polarity and can limit
cell movement and proliferation’ [20].

3.2.4. TGCnA yieldsmore robust genemodules in real data analysis
We also evaluated the robustness of the TGCnA module output using the consistency
between the modules discovered from the original data, and the clustering using the data
after being sub-sampled or with additional noise. Specifically, we half-sampled the original

Figure 4. Adjusted Rand Index for (A) half-sampling the real data and (B) the real data-driven simulation
with 10% added noise.
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data at each time points and ran TGCnA, which repeated for 20 times. Figure 4(A) com-
pared the TGCnA and the Naive method in terms of the ARI between the gene module
outputs of the half-sampled data with the original data output. We found that TGCnA
yielded more consistent ARI across time points, and they were higher than the results of
the naive method at the majority of the time points. We remarked that the time differ-
ence between the last four times points are much larger than those between the earlier
time points and the time span for each of these groups are also much wider (see Appendix
Table A1), which could potentially explain the vanishing advantage of TGCnA at these
time points as the information of the other time points became less useful. Nevertheless,
TGCnA provided overall more robust modules. We also ran a real data-driven simulation
by adding white noise to the data. The standard deviation of the added white noise for each
gene at each time point is 0.1 times the standard deviation of its expression. In this analy-
sis, we again found that the ARI of TGCnA output is higher than that of the naive estimate
(Figure 4(B)).

4. Conclusion and discussion

Both of gene coexpression network analysis and temporal transcriptomic studies have been
widely used. There has not been any appropriate and computationally feasible time-specific
GCN inference from time-course data. Most of the existing studies either model the GCN
at each time point completely separately, or pool the data across time points to build one
single network. In this paper, we proposed the Temporal Gene Coexpression Network
Analysis (TGCnA) that jointly model the temporal transcriptomic data when the sam-
ples at different time points are potentially from different subjects. The outputs of TGCnA
are time-specific gene-gene correlation matrices, which allow the users to perform various
downstream analysis flexibly with other computational tools such asWGCNA. Using both
simulation and real data examples, we have shown that TGCnA achieves more accurate
correlation matrix estimation and more robust module identification.

The statistical nature of TGCnA is a ‘low-rank plus sparse’ estimator of the covariance
matrices, and it could be viewed as an extension of the Principal Orthogonal Complement
Thresholding (POET, [12])method.While POET focused on one single covariancematrix,
TGCnA jointly estimatesmultiple covariancematrices simultaneously under the structural
assumption that their low-rank components share the same factors.

One issue with TGCnA, along with other correlation-based network models, is the
interpretability of the network links, as there are many biological and technical factors
that may contribute to the empirical gene-gene correlations. Besides improving the data
pre-processing to reduce the impact of the undesirable confounders, the interpretability
can also be potentially improved via data integration [7]. Thus we will explore the incor-
poration of the epigenetic data, metabolic pathway, gene oncology and protein-protein
interactions in our modeling framework. The input samples from different points should
be under similar conditions except for the time effect.Wewill also explore TGCnA’s poten-
tial in the meta-analysis of the time-course samples from different studies by studying
proper preprocessing procedures to remove the study-specific factors. In this paper, we
focused on the analysis of the coexpression networks themselves. Many other works in
the literature attempted to incorporate the coexpression information in clustering of the
gene expression curves [18,26]. But they usually considered the coexpression across time
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points for the same gene, and rarely explicitly modeled the gene-gene correlations as in
TGCnA.Another potential future research directionwould be utilizingTGCnA to improve
the clustering of the mean gene expression curves.
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Appendices

Appendix 1. Supplementary notes

A.1 AIC andMDL for selecting K

When the number of principal components taking the value of k = 1, . . . ,m, AIC and MDL have
the form of

AIC(k) = −2n(m − k) log ρ(k) + 2k(2m − k),

MDL(k) = −n(m − k) log ρ(k) + k
2
(2m − k) log n,



JOURNAL OF APPLIED STATISTICS 1079

respectively, wherem = N−T is the total number of samples N = nT subtracted by T, the number
of time points. The internal function ρ(k) is

ρ(k) = (lk+1lk+2, · · · , lm)1/(m−k)

1
m−k (lk+1lk+2, · · · , lm)

,

where lk = σ̂ 2 + d2k represents the corresponding eigenvalues, and dk is the kth singular value, the
value of σ̂ 2 is estimated as the mean of diagonal elements of the covariance matrix after subtracting
the low-rank component UDUT, where D is the K × K diagonal loading matrix.

A.2 Simulationmodel

We simulated gene expression data whose covariance matrices �t were generated based on
Equation (1).

Let p be the number of genes and C the number of underlying gene groups. We first simulated
the p × C time-invariant latent factor matrix U as the following. As we have discussed, our model
was motivated by the observation that the genes usually belong to certain functional groups with
time-varying effects, and these groups may overlap. Thus we first simulated a p × C binary group
membership matrix S, where S(j, g) = 1{gene jbelong to group g}. For each group, we picked a ran-
dom integer between [1/C, 2/C] as the group size, and its members are randomly selected. Note that
its rows could contain more than one non-zero elements as the groups could overlap. Then we used
the left singular vectors of S+ 0.01A as the latent factorsU, whereA is a p × C randommatrix whose
entries are i.i.d. from Unif (−1, 1).

Next, we simulated the time-varying weights of these latent factors. For t = 1, . . . ,T, let dg,t be
the gth diagonal element ofDt .We defined (log(dg,1), . . . , log(dg,T)) as a random linear combination
of B-spline basis defined on (0,T + 1), whose coefficients were i.i.d. samples fromUnif (−1, 1). Then
Lt = UDtUT is the low-rank component of the simulated covariance matrix.

The most naive way of simulating the sparse component Rt is simply generating a sparse random
symmetric matrix. But such matrix does not contain any information about the structure. To gener-
ate an informative sparse component, we defined the elements of the upper triangle of the symmetric
matrix Rt as the following:

Rt(i, j) = bt,i,j · et,i,j · sign
(
Lt(i, j)

)

where bt,i,j
iid∼ Unif (0.1, 0.3), et,i,j

iid∼ Bernoulli(pt,i,j) with the probability pt,i,j = 0.005 · 1{|Lt(i, j)| ≥
qt} + 0.0005 · 1{|Lt(i, j)| < qt}, and the diagonal elements of Rt were set to 1. Here bi,j modeled the
magnitude of the time-point specific sparse component, and the definition of pt,i,j ensured that Rt
and Lt contained non-contradicting information about the underlying structure. qt were set as the
0.9 quantile of the absolute values of the off-diagonal elements of Lt in out simulation.

Finally, we defined the time-specific covariance matrix �t = UDtUT + Rt and simulated Xt,r
from N(0,�t) for r = 1, . . . , n.

We also additionally simulated length p count vectors X̃t,r from Poisson distributions with expec-
tations 20 exp(0.2Xt,r), so that the simulated counts are correlated through�t , the covariancematrix
of their expectations in log scale.�t is as specified for simulated continuous data. The scaling param-
eters 20 and 0.2 in the transformation are chosen so that the output resemble the range as seen in
real RNA-Seq data.

In our simulation studies, we fixed p = 2000 and considered T = 5, 15, C = 5, 15, and n = 5,
15. For each setting, the simulations were repeated for 40 times.

A.3 Identifying themost relevant genes for latent factors

According to Equation (1), for each pair of genes (i, j),

�̂t(i, j) =
K∑

k=1

Dt(k, k)U(i, k)U(j, k) + R̂t(i, j)
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The contribution of one single factor k to the correlation pattern among gene i and other genes
could be measured by |U(i, k)|, because factor k becomes irrelevant to the covariances involving
gene i at all time points if |U(i, k)| is close to 0. Following a similar spirit, the joint relevance of a
group of factors k1, . . . , kA to the covariances involving a particular gene i could be measured by
�i = ∑A

a=1 U(i, ka)2. It is essentially the L2 row norm of the corresponding submatrix of U. For a
group of factors, we said a gene i was more relevant to these factors if �i is large. For our KEGG
enrichment analysis, we considered the top 25% genes with the largest �i for each cluster of latent
factors.

A.4 Conservative differential enrichment analysis

In a pairwise comparison of time points t1 and t2, a pathway is said to be specific to t1 if it satisfies the
following conditions. (1) It is enriched for some modules at t1 but not at t2 nor for the above time-
invariant modules; and (2) at most 25% of the genes that are involved in this pathway are also in
any of the pathways enriched at t2 or in the time-invariant modules. The second criterion is to avoid
the case where two pathways shared a large proportion of genes, but were enriched at different time
points due to their minor differences in gene composition and the statistical cutoff in enrichment
analysis.

Appendix 2. Supplementary figures and tables

Table A1. Description of developmental stages for the Brainspan data available
at http://www.brainspan.org/static/download.html.

Stage Age Developmental stage Replicates number

1 8–9 pcw Early prenatal 30
2 10–12 pcw Early prenatal 45
3 13–15 pcw Early mid-prenatal 44
4 16–18 pcw Early mid-prenatal 53
5 19–24 pcw Late mid-prenatal 43
6 25–38 pcw Late prenatal 22
7 Birth–5 months Early infancy 33
8 6–18 months Late infancy 26
9 19months–5 years Early childhood 44
10 6–11 years Late childhood 41
11 12–19 years Adolescence 50
12 20–40 years Adulthood 93

http://www.brainspan.org/static/download.html
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Figure A1. Selecting the number of latent factors using AIC and MDL for the simulation studies.
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Figure A2. Selecting the number of latent factors using AIC and MDL for the real data analysis.
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Figure A3. Adjusted Rand Index between the discovered modules and the ‘true’ simulated modules at
each time point for simulated count data.
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